
CS131 Fall '24 Midterm
Nov 7th, 2024

Student ID #: ______-______-______

Full Name (First Last): _____________________________________

Practice Academic Integrity - Don't cheat.
(There are multiple versions of the exam, so copying from a

neighbor will only get you caught - trust us.)

Problem #1: Haskell basics (15m) /15

Problem #2: Algebraic Data Type silliness (15m) /9

Problem #3: Curry, anyone? (15m) /12

Problem #4: Object references: I told you so! (20m) /12

Problem #5: Didja really do the project? (15m) /14

Problem #6: I'm not your type… or am I? (10m) /8

Total /70

1. [15 points] In this problem, you are to complete a function named totalVowels that takes a
list of strings and returns the total number of vowels ('a', 'e', 'i', 'o', 'u', both uppercase
and lowercase) present in all the strings combined. For example:

let strings = ["Hello", "World", "HaskEll"]

totalVowels strings -- Should return 5

Fill in the blanks in the code below to implement this function:

totalVowels :: _____________ -> _______________

totalVowels strs = helper ___________ 0

where

helper [] _____________ = _____________

helper (______________) acc =

helper _________ (____________ + countVowels ___________)

countVowels _______________ = 0

countVowels (c:cs)

| __________ `elem` "____________________" =

______________ + _______________ cs

| otherwise = _____________________________________

Hints:
1. The helper function uses an accumulator to compute its result
2. The countVowels function operates on a single string at a time
3. Figure out your answer first below, then write your final answer in the slots above

2. [9 points] Consider the following Algebraic Data Type representing a government record.
Right now, our government record ADT has only a single variant which represents a document.
Each document has a title, a boolean indicating whether the document is top-secret, and zero or
more references to related background records:

data GovtRecord =

Document {

title :: String,

secret :: Bool,

relatedDocs :: [GovtRecord]

}

Fill in the blanks below to complete a function named docExists that takes a String (a title of
a document) and a GovtRecord ADT that represents a top-level document. The function must
check if the top-level document or any documents it directly or indirectly refers to has a
matching title, and return True if at least one non-secret document matches, and False
otherwise.

The function should skip the secret documents themselves (i.e., it will never return true if the
searched for title only matches the title of a secret document), but it should still search all of
each secret document's referred-to documents to see if they match the title and are not secret. If
multiple documents share the same title, the function must return True if at least one
non-secret document matches. Your function must use pattern matching. There will be no
loops or cycles in document references.

Here's how your function might be used:

doc1 = Document "Team Members" False []

doc2 = Document "Top Secret Design Doc" True []

doc3 = Document "Top Secret Project Schedule" True [doc1]

mainDoc = Document "Project Orion" False [doc2, doc3]

docExists "Top Secret Design Doc" mainDoc -- This should return False

docExists "Team Members" mainDoc -- This should return True

docExists "Project Orion" mainDoc -- This should return True

docExists "Project Gemini" mainDoc -- This should return False

docExists "CS131 Final" doc1 -- This should return False

Hints:

1. or [] evaluates to false
2. You may use any built-in Haskell functions, including higher-order functions like foldl,

map, filter, and reduce in your solution

Fill in the blanks in the code below to implement this function:

docExists :: ___________ -> GovtRecord -> ___________

docExists docTitle (___________ title ___________ related)

| title == ___________ && secret == ___________ = True

| ______________ =

or (___________ (docExists ___________) related)

3. [12 points]

Part A. [2 points] Write a complete, syntactically correct type signature for the following function
assuming x and y are Ints. You must write your type signature such that it has no unnecessary
parentheses.

foo x y = x > (y+5)

ANSWER: __

Part B. [3 points] Determine the type of the bletch function and write a type signature for it.

bletch = map (\x -> [x])

ANSWER: __

Part C. [4 points] Write a complete, syntactically correct type signature for the following function.
You must write your type signature such that it has no unnecessary parentheses.

bar a b c =

head (map c a) > (b ++ "!")

ANSWER: __

Part D. [3 points] As we learned in class, Haskell automatically curries all functions for us.
Rewrite the boo function to explicitly show its curried form. Just show the function's body - you
may omit the type signature.

boo x y z = foldl z 0 x > y

ANSWER:

boo x = __

4. [12 points] Suppose we run this Python program full of lovely object references:

from copy import copy, deepcopy

class MyClass:

def __init__(self, lst, tup, flag):

self.data = lst

self.nested_data = tup

self.flag = flag

def modify(self, x):

x[1][1] = "pizza"

lst = [5, [10, "potato"]]

tup = ("foo", [12, "cheese"])

flag = True

ins1 = MyClass(lst, tup, flag)

ins2 = ins1

ins3 = copy(ins1)

ins4 = deepcopy(ins1)

PART A

ins1.flag = False

print(ins2.flag)

print(ins3.flag)

print(ins4.flag)

PART B

ins1.data = [0, [10, "potato"]]

print(ins2.data[0])

print(ins3.data[0])

print(ins4.data[0])

PART C

ins1.data[1][1] = "yam"

print(ins2.data[1][1])

print(ins3.data[1][1])

print(ins4.data[1][1])

PART D

ins1.modify(ins1.nested_data)

print(ins2.nested_data[1][1])

print(ins3.nested_data[1][1])

print(ins4.nested_data[1][1])

For each part, write out what the program outputs assuming it runs from top to bottom.

Part A. [3 Points]

ANSWERS:

Part B. [3 Points]

ANSWERS:

Part C. [3 Points]

ANSWERS:

Part D. [3 Points]

ANSWERS:

5. [14 Points]

Alex Fife is about to implement variable scoping in his Brewin interpreter. To do this, he is
considering using a stack data structure where each element on the stack is an instance of the
Block class:

class Block:

def __init__(self):

self.vars = {} # maps var names defined in current block to values

Here's how Alex is thinking of using his stack structure:

- A new Block object will get pushed to the stack each time a new block is entered in the Brewin
program being interpreted. The top (i.e., most nested) block will always be in the last element of
self.scope_stack, e.g., in self.scope_stack[-1].

- The top Block on the stack will be popped each time the Brewin program exits a block.

- Each time a new variable is defined in Brewin (e.g., var x;), the interpreter will add a mapping
from the variable's name to None to the vars dictionary in the top Block on the stack.

- When an in-scope variable is assigned to a value (e.g., x = 5;), the vars dictionary entry in the
appropriate Block will be updated so the variable maps to the specified value.

Below is the initial implementation of Alex's interpreter:

class Interpreter:

def __init__(self):

self.scope_stack = [] # stack of Block objects

def run_assign(self, var_name, var_val):

for block in self.scope_stack[::-1]: # [::-1] yields a reversed list

if var_name in block.vars:

block.vars[var_name] = var_val

return True

return False

def run(self, program):

... # assume this implements Alex's plan from above

Here's a Brewin program that Alex will use to test his interpreter. There are no typos, we
checked!

[01] func main() {

[02] var x;

[03] x = true;

[04] var y;

[05]

[06] for (y = 0; y < 2; y = y + 1) {

[07] var y;

[08] y = false;

[09] if (x) {

[10] x = y;

[11] print(x); /* A.3 */

[12] }

[13] }

[14]

[15] foo();

[16] print(x == y); /* A.4 */

[17] }

[18]

[19] func foo() {

[20] x = 2;

[21] }

Part A. [8 points]

Suppose you run the Brewin program with Alex’s interpreter as it is currently implemented
and pause execution right after line 8 has finished running during the first iteration of the
loop.

A.1.What is the value of self.scope_stack[-1].vars at this point?

ANSWER: _____________________________

A.2.What is the value of self.scope_stack[0].vars at this point?

ANSWER: _____________________________

Suppose you run the Brewin program with Alex’s interpreter as it is currently implemented.
For each line A.3 and A.4, write what the program will output at that line or write “error” if you
think the program crashes before it can output that line's print statement.

A.3.

ANSWER: _____________________________

A.4.

ANSWER: _____________________________

Part B. [4 points]

After running the above Brewin program with his interpreter, Alex has spotted an issue with his
scoping implementation. To fix it, he’s decided to add an additional argument to his Block class
constructor as follows:

class Block:

def __init__(self, is_func):

self.vars = {} # dict mapping the names of vars defined in the current block

self.is_func = is_func

Using this new parameter, he’s updated his interpreter implementation in the following way:

- If a newly created Block is for a function, it will be initialized with is_func=True. Otherwise, it
will be initialized with is_func=False (e.g., when an if block or for block is entered).

The last thing Alex needs to do is update his run_assign function to take advantage of this new
parameter.

Help Alex update his run_assign function such that his scoping implementation works properly
by filling in the blanks:

def run_assign(self, var_name, var_val):

for block in self.scope_stack[::-1]:

if ______________________ and _______________________:

return False

if var_name in block.vars:

block.vars[var_name] = var_val

return True

return False

Part C. [1 point]

Assuming the above implementation is correct, write the line number from the original Brewin
program where the behavior of Alex’s updated interpreter diverges from his initial version.

ANSWER: _______

Part D. [1 point]

What would be the behavior of the updated interpreter at this line? Answer with a single short
sentence or phrase. (Again, assume that this updated interpreter correctly implements Brewin.)

ANSWER: __

6. [8 Points]

Consider the following program in an unknown language:

set.src

class Set {

... // defines a set class

func length() {

// return int representing num items in set

}

}

main.src

import set

func bar(y = true) { // y defaults to true if no parameter is passed

print("bar: ", y)

}

func foo(x) {

bar(x.length())

}

func main() {

s := Set() // Creates an empty set

foo(s) // Line A

}

Part A: (4 points)

Let's assume this program executes successfully. You may also assume that this mystery
language performs type coercions (when required) from int to boolean, with 0 coercing to false,
and non-zero values coercing to true.

A.1. [2 points] Assuming this language is statically typed, what would the output of the
program be? If it cannot be statically typed, write "cannot be statically typed".

ANSWER: ___

A.2. [2 points] Assuming this language is dynamically typed, what would the output of the
program be? If it cannot be dynamically typed, write "cannot be dynamically typed".

ANSWER: ___

Part B: (2 points)

Imagine that we made the following one line addition to our code, with all other constraints left
as-is:

main.src

import set

func bar(y = true) { // y defaults to true if no parameter is passed

print("bar: ", y)

}

func foo(x) {

bar(x.length())

}

func main() {

s := Set() // Creates an empty set

foo(s) // Line A

foo("abc") // LINE THAT WAS ADDED!

}

Assuming this updated program executes successfully, given only the concepts we've learned
so far in class, could this language be statically typed or dynamically typed or either? List all
that apply.

ANSWER: __

Part C: (2 points)

Let's assume the compiler/interpreter refuses to accept the changed program above and instead
generates a type error prior to the program's execution. If we comment out line A and the
program now compiles/interprets successfully, what would the program print out?

ANSWER: __

