
CS131 Fall '24 Final
Dec 9th, 2024

Student ID #: ______-______-______

Full Name (First, Last): _____________________________________

Practice Academic Integrity - Don't cheat.
(There are multiple versions of the exam, so copying from a

neighbor will only get you caught - trust us!)

Problem #1: Harder Haskell… Nooooooo! (15 min) /13

Problem #2: Always Clean up After Yourself! (21 min) /14

Problem #3: You're Bound To Do Well (12 min) /12

Problem #4: How Sharp Are You On Brewin#? (15 min) /14

Problem #5: Spooky Arithmetic (22 min) /21

Problem #6: The Problem of Our Generation (25 min) /23

Problem #7: Are you a Pro or a Log? (25 min) /25

Total (110 min) (1 hr 50 min) /122

Although we expect this exam to take around 110 min,
you will have 150 min (2.5 hrs)



1. Harder Haskell… Nooooooo! [13 Points]

Lambda calculus is the mathematical basis of functional programming. It contains formal
theories related to lambda expressions. There is an interesting idea in lambda calculus called
Church Encoding, which defines a sequence of lambda expressions with interesting properties.
Such kinds of lambda expressions are called Church Numerals. Using Haskell as our tool, we
can take a peek without going too far into the formal theories.

Part A

The first three (i.e., the “zeroth”, first and second) Church Numerals in the sequence can be
written in Haskell as:

c_0 = \f -> \x -> x

c_1 = \f -> \x -> f x

c_2 = \f -> \x -> f (f x)

Despite the name, the lambdas that define Church Numerals can be applied to more than just
numeric types. You should not make any extra assumptions on the types of f and x in your
answer.

A.1Write down the type signature of c_1.

ANSWER: c_1 :: ___________________________________________

It turns out that Church Numerals all have the same general form, the only difference is that the
n-th Church Numeral, c_n, applies f on x for n times (n = 0, 1, 2, …).

A.2Write a one-line function named church_to_index that returns the (zero-based) index
given an arbitrary Church Numeral c. For example:

church_to_index c_0 -- returns 0 when using c_0 from above

church_to_index c_2 -- returns 2 when using c_2 from above

Hint: Remember that c is a function that accepts another function as its argument and returns a
function

ANSWER: church_to_index c = ______________________________________



Part B

We can also write a function to obtain an arbitrary Church Numeral given its index:

get_nth_church n = church_gen n c_0

where

c_0 = \f -> \x -> x

succ c f = \x -> f (c f x)

church_gen 0 cacc = cacc

church_gen x cacc = church_gen (x - 1) (succ cacc)

The key here is the helper function succ (successor). It takes a Church Numeral and returns its
successor (i.e., the next Church Numeral in sequence). That is to say, (succ c_0) evaluates to
c_1, and (succ c_1) evaluates to c_2, etc. The whole function works by applying succ on c_0

for n times recursively to obtain c_n.

What are the free variable(s) in the lambda expression \x -> f (c f x) as returned by the
succ function? (If there are no free variables, answer None).

ANSWER: ______________________

Part C

C.1 Ashley wants to write a function first_n_church that returns the first n Church Numerals
(starting from c_0) in a list. Please help her write an one-line implementation using a list
comprehension and the get_nth_church function above:

ANSWER:

first_n_church n = [ ______________________________________________________ ]



C.2 Ashley thinks the efficiency of the function above can be improved from O(n2) to O(n).
Please fill in the blanks in the code below to satisfy her big-O requirement. (We assume
c_0 and succ have already been defined as in Part B)

first_n_church n = _______________ (helper 0 [])

where

helper x accum

| x >= n = ________________

| x == 0 = helper _______________ [c_0]

| otherwise = helper (x + 1)

((succ _______________) : _________)



2. Always Clean up After Yourself! [14 Points]
Suppose we run this code that attempts to create a linked list, written in a mystery language that
uses object reference semantics:

[01] require "addr" # gets the memory address of an object

[02]

[03] class Node

[04] fields val, prev, next

[05] def initialize(val)

[06] @val = val # Similar to self.val = val in Python

[07] @prev = nil

[08] @next = nil

[09] end

[10] end

[11]

[12] class LinkedList

[13] fields head

[14] def initialize

[15] @head = nil

[16] end

[17]

[18] def populate

[19] @head = Node.new(67)

[20] n2 = Node.new(68)

[21] n3 = Node.new(69)

[22] n4 = Node.new(70)

[23] n5 = Node.new(71)

[24] # print "#{addr(n2)}"

[25]

[26] @head.next = clone(n2) # shallow copy

[27] n2.next = n3

[28] n3.next = n4

[29] n4.next = n5

[30] n5.prev = n3 # prev, not next!

[31] # print "#{addr(n2)}"

[32] end

[33] end

[34]

[35] ll = LinkedList.new

[36] ll.populate

[37] ll = nil



Part A. For part A, you may assume that this language uses reference counting to do garbage
collection and that garbage collection happens immediately after an object is no longer
referenced.

A.1Which nodes, if any, are still active and in memory right before populate returns? Write the
value (e.g., 68) of each node that's still active or None if there are none. If multiple active nodes
have the same value, you must write the value multiple times.

ANSWER: _________________________________________________

A.2Which nodes, if any, are still active and in memory right after populate returns? Write the
value (e.g., 68) of each node that's still active or None if there are none. If multiple active nodes
have the same value, you must write the value multiple times.

ANSWER: _________________________________________________

A.3Which nodes, if any, are still active and in memory right after the last line of the program
executes but before the program terminates? Write the value (e.g., 68) of each node that's still
active or None if there are none. If multiple active nodes have the same value, you must write
the value multiple times.

ANSWER: _________________________________________________

Part B. Now assume hypothetically that this language uses mark and compact to do garbage
collection:

B.1Which Node objects, if any, are reachable right before populate returns? Write the value
of each of them or None if there are none. If multiple reachable nodes have the same value, you
must write the value multiple times.

ANSWER: _________________________________________________

B.2Which Node objects, if any, are reachable right after populate returns? Write the value of
each of them or None if there are none. If multiple reachable nodes have the same value, you
must write the value multiple times.

ANSWER: _________________________________________________



B.3Which Node objects, if any, are reachable right after the last line of the program
executes but before the program terminates? Write the value of each of them or None if there
are none. If multiple reachable nodes have the same value, you must write the value multiple
times.

ANSWER: _________________________________________________

Part C.

Now assume that we do not know the actual garbage collection strategy this language uses, but
we know that it is one of the approaches we learned in class. It's your job to figure out which
one by observing the behavior of variable n2 throughout the program’s execution.

Suppose that when we uncomment lines 24 and 31 and run the program, the program outputs:

720
360

What garbage collection strategy does this language actually use? In one sentence, explain
how you determined this.

ANSWER: __________________________________________________________________

___________________________________________________________________________



3. You're Bound To Do Well [12 Points]

You've been given a program in an unusual language which supports value, reference and
object reference binding semantics. As you can see, the language explicitly specifies the
binding semantics for every variable and parameter:

func foo(ref a, val b) {

a = Person(name: "Jaquin");

b.name = "Monte";

}

func bar(objref x, ref y) {

x.name = x.name + "poo";

foo(x, y);

print(x.name, y.name);

x = y;

y = Person(name: "Lu");

}

func bletch(val p, objref q) {

q.name += "ala";

bar(p, q);

print(p.name, q.name);

p.name += "ito";

}

func main() {

objref m = Person(name: "Samantha");

objref n = Person(name: "Brent");

bletch(m, n);

print(m.name, n.name);

}

Notes:
● If z is a reference to an object reference x, changes to z modify the object reference and

not the object pointed to by the object reference.
● When passing an object reference to a function that accepts a value parameter, the

language passes a copy of the object pointed to by the object reference
● When passing a value to a function that accepts an object reference, an object reference

to that value is passed



What does the above program print?

ANSWER:

______________________________________________

______________________________________________

______________________________________________



4. How Sharp Are You On Brewin#? [14 Points]
Consider this Brewin# program which was written to test project 4:

func foo(a) {
print("voldemort");
if (1/a == 1) {
print("valerian");
return 5;

}
print("cedric");
return 10;

}

func bar(a) {
print("jordan");
a = 20;
return a;

}

func main() {
var x;
var y;
var in;
in = inputi();

if (in == 1) {
x = 1;
y = bar(x) + x;

}
if (in == 2) {

x = foo(1) - 5;
y = foo(2) + x + x;

}
if (in == 3) {

x = bar(1);
y = foo(x);
x = y;

}

try {
foo(x);
print(y);

}
catch "div0" {

print("severus");
}

}



For each part/subproblem below, you may assume that:

● the program is executed from scratch in a fully working project 4 interpreter,
independently of the other subproblems

● the subproblem specifies what input is provided to the program (e.g., 1, 2 or 3) during its
execution

For each subproblem below, you must write the output of the program assuming the input is the
value specified. If you believe the program crashes at any point (due to an uncaught exception,
or any other error that violates the rules of Brewin#), write all outputs up until the point that
you think the program crashes and then write “crash” as your final line.

For each part, write each output on a separate line.

Part A. Suppose the user inputs a value of 1, what is the program's output?

ANSWER:

Part B. Suppose the user inputs a value of 2, what is the program's output?

ANSWER:



Part C. Suppose the user inputs a value of 3, what is the program's output?

ANSWER:



5. Spooky Arithmetic [21 Points]
Consider this code snippet from a compiled, made-up language:

[01] type BasicArith {

[02] Add (+) (op2 BasicArith) BasicArith

[03] Subtract (-) (op2 BasicArith) BasicArith

[04] }

[05]

[06] func Sum[T any](values []T) T {

[07] var total T

[08] for _, v := range values {

[09] total = total (+) v

[10] }

[11] return total

[12] }

[13]

[14] func main() {

[15] arr := []SpookyInt{10, 20, 30} // SpookyInt definition not shown

[16] fmt.Println(Sum(arr))

[17] // fmt.Println(arr[2] (-) arr[1])

[18] }

The compiler for this language outputs the following error during compilation:

operator (+) not defined on a variable of type any

However, when any on line 6 is changed to BasicArith, the code compiles, and when executed,
outputs 60 as expected.



Part A

For all of Part A, you may assume that we changed the term "any" on line 6 to
"BasicArith" and that the code outputs 60 as expected.

A.1Without making any additional assumptions (such as compiler optimizations), identify all of
the following programming language strategies that the code must be using to operate as
described and write them in the answer section. You will lose points for additional incorrect
selections:

A. Parametric polymorphism
B. Subclass inheritance
C. Implementation inheritance
D. Dynamic dispatch
E. Duck typing
F. Templates
G. Generics

ANSWER: _____________________________________

A.2 Suppose we uncomment line 17. Will the program compile (yes, no, can't be determined)?
Explain your answer using a maximum of 2 sentences. Explanations longer than 2 sentences
will not receive credit.

ANSWER:

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________



A.3 Suppose we change our main function to look like this - notice it uses a new type called
FriendlyType which is defined for use, but its definition is not shown:

func main() {

arr := []FriendlyInt{10, 20, 30} // FriendlyInt definition not shown

fmt.Println(arr[2] (-) arr[1])

// fmt.Println(Sum(arr))

}

This code compiles and outputs 10 when run.

Now suppose we uncomment the commented line. Will the program compile (yes, no, can't be
determined)? Explain your answer using a maximum of 2 sentences. Explanations longer than
2 sentences will not receive credit.

ANSWER:
________________________________________________________________________

________________________________________________________________________

________________________________________________________________________



Part B Consider this snippet of Python code:

[01] class BasicArith:

[02] def __init__(self, v):

[03] self.v = v

[04] def __add__(self, op2):

[05] return BasicArith(self.v + op2.v)

[06] def __sub__(self, op2):

[07] return BasicArith(self.v - op2.v)

[08] def __str__(self):

[09] return str(self.v)

[10]

[11] class SpookyInt(BasicArith):

[12] def __init__(self, v):

[13] super().__init__(v)

[14]

[15] def Sum(values) -> BasicArith: # should return BasicArith object

[16] total = 0

[17] for v in values:

[18] total = total + v

[19] return total

[20]

[21] def main():

[22] arr = [SpookyInt(n) for n in [10,20,30]]

[23] print(Sum(arr))

[24] # print(arr[2] - arr[1])

[25]

[26] if __name__ == '__main__':

[27] main()

Hints: In Python, calling a + b actually calls a.__add__(b) under the hood and calling a - b
actually calls a.__sub__(b) under the hood

B.1 This code crashes when it runs. Modify a single line of code such that the program will
output “60” as expected and the implementation of Sum follows the type hint given on line 15.

ANSWERS:

What line # do you chose to modify: ________

Show the corrected version of the line: _____________________________________________



For parts B.2, B.3 and B.4 of the problem, assume your answer to B.1 is correct.

B.2 Identify all of the following programming language strategies that are used in the example
above and write them in the answer section. You will lose points for additional incorrect
selections:

A. Parametric polymorphism
B. Subclass inheritance
C. Implementation inheritance
D. Dynamic dispatch
E. Duck typing
F. Templates
G. Generics

ANSWER: ______________________________________

B.3 Suppose we uncomment line 24. Will the program crash when run (yes, no, can't be
determined)? Explain your answer using a maximum of 2 sentences. Explanations longer
than 2 sentences will not receive credit.

ANSWER:

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________



B.4 Suppose we change our main function to look like this:

def main():

arr1 = [SpookyInt(n) for n in [10,20,30]]

# FriendlyInt definition not shown, but exists in our source file

arr2 = [FriendlyInt(n) for n in [10,20,30]]

print(arr1[0] + arr2[0])

# print(arr2[0] + arr2[1])

The code outputs 20 when run.

Now suppose we uncomment the bottom commented line. Will the program crash when run
(yes, no, can't be determined)? Explain your answer using a maximum of 2 sentences.
Explanations longer than 2 sentences will not receive credit.

ANSWER:

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________



6. The Problem of Our Generation [24 Points]
Note: all parts of this problem refer to Python.

Part A

Fill in the blanks to create a generator for the Fibonacci sequence 1, 1, 2, 3, 5, 8, … (i.e., the
first two elements are ones, and each next element is the sum of the two preceding elements).
Given a value of n, your generator must generate all the elements less than n in increasing
order and use constant memory.

Your generator should support the following syntax:

for i in fib(13):

print(i, end=" ")

# prints 1 1 2 3 5 8 since each of these values is less than 13

ANSWER:

def fib(n):

fib_prev = 1

fib_cur = __________

while ____________________:

____________________

old_fib_prev = fib_prev

fib_prev = __________

fib_cur = __________



Part B

What does the following code output?

def take(g, n):

lst = []

lst.append(next(g))

for i in range(n):

lst.append(next(g))

return lst

def gen1(a, d):

while True:

yield a

a += d

print(take(gen1(300, 6), 4))

ANSWER: ___________________________________________

Part C

Below is a mostly-completed definition of a Matrix class that represents a matrix as a list of lists.
You may assume that the provided list will always be of the correct format (each row is of the
same length, all lists only contain integers).

class Matrix():

def __init__(self, vals):

self.matrix = vals

def get(self, row, col):

return self.matrix[row][col]

def set(self, row, col, val):

self.matrix[row][col] = val

…



For problems C.1 and C.2, your goal is to be able to use this Matrix class as follows:

mat = Matrix([[0,1,2], [3, 4, 5]])

s = 0

for val in mat:

s += val

print(s) # prints 15

C.1 Complete the definition of MatrixIterator, which is an iterator class for your new Matrix class,
so that the matrix is traversed in a row-major order (i.e., first row left to right, then second row
left to right, etc).

class MatrixIterator():

def __init__(____________________):

self.matrix = _____________

self.n_rows = len(vals)

self.n_cols = _____________ if _____________ else 0

self.row = 0

self.col = 0

def __________(self):

if self.row == self.n_rows:

______________________________

val = ____________________

self.col += 1

if _______________:

self.row = __________

self.col = __________

return val



C.2 Next, fill in the blanks below to complete the definition of the Matrix class so it supports
iteration over its elements using MatrixIterator:

class Matrix():

def __init__(self, vals):

self.matrix = vals

... # rest of code shown above

def _______________(self):

return _______________________________________

Part D

Professor N was trying to implement a generator function interleaved that takes two iterable
objects iterable1 and iterable2 and generates elements by alternating between them: first
element of iterable1, first element of iterable2, second element of iterable1, etc.
Elements of each iterable object should appear in the generated sequence in the order of
iteration. Finally, when one of the iterables is exhausted, the generator should yield the
remaining elements of the other iterable. This is how the function is intended to work.

lst1 = [1, 3]

lst2 = ["a", "b", "c", "d"]

for val in interleaved(lst1, lst2): # line A

print(val, end=" ")

# supposed to print 1 a 3 b c d

When Professor N asked a questionable LLM to give a solution, here’s what it suggested:

def interleaved(iterable1, iterable2):

for val1 in iterable1:

yield val1

for val2 in iterable2:

yield val2

What is the result of running the loop above (labeled as line A) with this implementation of
interleaved?

ANSWER: ___________________________________________



7. Are you a Pro or a Log? [25 Points]

Prolog, especially its list processing, was a big headache for Johnny when he took CS131. But
he managed to overcome it by using functional programming for inspiration. When he wants to
write a list processing predicate in Prolog, he first tries to write an “equivalent” function in
Haskell using pattern matching. It turns out that the latter can often be mapped into Prolog logic
quite naturally.

For example, Jonny first wrote a list reverse function in Haskell on the lower left. Then, on the
lower right he showed his functioning do_rev predicate in Prolog. We can see the close
resemblance of the two versions.

Haskell
do_rev [] = []

do_rev (x:xs) =

let t = do_rev xs

y = t ++ [x]

in y

Prolog
do_rev([], []).

do_rev([X|Xs], Y) :-

do_rev(Xs, T),

append(T, [X], Y).

Part A

Assume that we define do_rev as above and execute the query:

do_rev([1, 2, 3], [3, 2, 4])

in the Prolog interpreter.

A.1What are the first two subgoals that Prolog will add to its evaluation stack in order to
evaluate the do_rev rule?

ANSWER:

______________________________________________________________

______________________________________________________________

A.2 What are the mappings in Prolog’s evaluation stack when it has the above subgoals as
pending goals (for example, Q -> [apple, pear]):

ANSWER: ______________________________________________________________



Part B

Johnny was a little concerned about the efficiency of his Prolog predicate because he knows the
Haskell version has O(n2) complexity due to the concatenate (++) operation. Because of this, he
decided to write a new predicate named do_rev2 that's guaranteed to have O(n) complexity,
based on this more efficient Haskell version of reverse:

rev_app [] acc = acc

rev_app (q:qs) acc = rev_app qs (q:acc)

do_rev2 q = rev_app q []

Please help Johnny write a working do_rev2 predicate by applying his method. Fill in the
blanks below:

ANSWER:

rev_app(____________________, Acc, ____________________).

rev_app([Q|Qs], Acc, R) :-

rev_app(_________________, _________________, R).

do_rev2(Q, R) :- rev_app(Q, _____________, ______________).



Part C

Now Johnny is getting excited and wants to write his own Prolog function without starting with a
Haskell version. He's decided to implement a predicate to interleave two Prolog lists together.
When interleaving two lists L1 and L2, the interleave predicate alternates elements from
each list one by one: L1[0], L2[0], L1[1], L2[1], L1[2], L2[2], .... If one list runs out of elements
before the other, the remaining elements of the longer list are automatically appended to the
end of the resulting interleaved list.

For example:

?- interleave([a, b, c], [1, 2, 3], Result).
Result = [a, 1, b, 2, c, 3].

?- interleave([x, y, z, w], [7, 8], Result).
Result = [x, 7, y, 8, z, w].

?- interleave([], [alpha, beta, gamma], Result).
Result = [alpha, beta, gamma].

Complete the following Prolog code by filling in the blanks to define a predicate
interleave(List1, List2, Result) that interleaves elements from List1 and List2
into Result. If one list is longer, the remaining elements are appended at the end.

ANSWER:

interleave(________________, ListA, ListA).

interleave(ListB, ______________, ListB).

interleave([M|N], [J|K],

[_______________, _____________ | ____________]) :-

interleave(______________, ______________, Result).

END OF EXAM




