
CS131 Fall '23 Midterm
Nov 7th, 2023

Student ID #: ______________

Full Name (First, Last): _____________________________________

Practice Academic Integrity - Don't cheat!
(There are multiple versions of the exam, so copying from a

neighbor will only get you caught - trust us!)

Problem #1: Object Reference Madness /10

Problem #2: Algebraic Data Type Silliness /15

Problem #3: Map, Filter, Repeat /12

Problem #4: I'm Partial to Curry(ing) /12

Problem #5: Eggert's Scoping and Typing /12

Problem #6: This 'n' That /12

Total /73

1. Object Reference Madness (10 points)

In this problem, you must figure out what the following Python script prints when you run it:

class Potato:

def __init__(self, x):

self.weight = x

self.bites = []

def bitten_by(self, name):

self.weight -= 1

self.bites = self.bites + [name]

return self.bites

def foo(potat):

names = potat.bitten_by("Andrey")

names = names + ["Justin"]

def main():

p1 = Potato(5)

names = p1.bitten_by("Bonnie")

names.append("Carey")

print(p1.bites) # Line A

p1.bitten_by("Brian")

print(p1.bites) # Line B

print(names) # Line C

foo(p1)

print(p1.bites) # Line D

print(names) # Line E

if __name__ == "__main__":

main()

WRITE YOUR ANSWER ON THE NEXT PAGE

Answer Problem 1 here:

a. (2 points) What does Line A print?

b. (2 points) What does Line B print?

c. (2 points) What does Line C print?

d. (2 points) What does Line D print?

e. (2 points) What does Line E print?

2. Algebraic Data Type Silliness (15 points)

Given the following linked-list algebraic data type in Haskell:

data List = Node Int List | Nil

a. (2 points) Show the Haskell expression to create a linked list comprised of Nodes and Nil that
holds the values 1,2,2,3,3

list_with_dups =

b. (10 points) Write a function called dup_rem that removes consecutive duplicate values from a
List (like the one you defined above) and returns a new List that contains only the
non-duplicated items. You may assume that the List only holds positive integers (> 0) in
ascending order (e.g., 1,1,2,2,2,3,4,4), and that the List may be empty. So using dup_rem on
a List containing the values 1,1,2,2,2,3,4,4 should produce an output list 1,2,3,4. Here's how it
might be used:

-- outputs a List containing 3 nodes with values 1, 2 and 3.

list_wo_dups = dup_rem list_with_dups

Here are the requirements for your function:

● It must be less than 15 lines long
● It must include a type signature
● It may use a helper function

Hint: You may find a tuple helpful.

WRITE YOUR ANSWER ON THE NEXT PAGE

b. Answer Problem 2.b here:

c. (3 points) Assuming you pass in a linked list that contains the following values 10,10, 20, 30,
40, 50, 60 to your dup_rem function, how many new Node values are created (not Nil values,
but just Node values) during the execution of the function. For full credit, explain why.

3. Map, Filter, Repeat! (12 points)

a. (2 points) Write a Haskell function named extract2nd that accepts a list of tuples as its only
argument and returns a list of the second element from each tuple in the same order. You must
use map, filter or foldl/foldr, and provide the function type signature for full credit.

For example:

extract2nd [('a', 1), ('b', 2), ('c', 4)]

returns: [1, 2, 4]

Write your answer here:

b. (2 points) Write a Haskell function named filterBy1st that accepts a list of tuples and a value
of the same type as the first element in the tuples. This function must return a new list that
removes all tuples from the input list where the first element matches the value. You must use
map, filter or foldl/foldr. You do NOT need to include the type signature for full credit.

For example:

filterBy1st [(11,"a"), (22,"b"), (33,"c"), (22,"d")] 22

returns: [(11,"a"), (33,"c")]

c. (4 points) Write a Haskell function named removeElemAtIndex that accepts a list of integers
and an index (zero-indexed) as its parameters. The function must return a new list with the
element at the given index removed. Your function must use the extract2nd and filterBy1st
functions. You do NOT need to include the type signature for full credit.

For example:

removeElemAtIndex [10,20,30,40,50] 3

returns: [10, 20, 30, 50]

Hint: Consider using Haskell’s zip function!

d. (4 points) This problem is independent of parts a - c. Write a Haskell function named dup_rem
that eliminates consecutive duplicates from a Haskell list (not necessarily in ascending order)
and returns a new list that contains only the non-duplicated items. You must use map, filter or
foldl/foldr. You do NOT need a type signature. Hint: Use Haskell's last fn: last [1,2,4] → 4.

For example:

dup_rem [1, 1, 2, 2, 2, 3, 3, 1, 1]

returns: [1, 2, 3, 1]

4. I'm Partial to Curry(ing) (12 points)

For this problem, consider the following Haskell function:

mystery p q [] = False

mystery p q (x:xs) =

j

where

h = length xs -- Line A

i = q (p x)

j = mystery p q xs || i > h

a. (5 points) Your first job is to figure out the type signature for the mystery function by analyzing
its code and performing type inference. Write the uncurried type signature (just like Haskell
would show it with :t) for this function, using type variables if necessary. You do not need to
include type classes in your type signature.

b. (2 points) Now show the fully curried type signature for this function, based on the answer
you got for part a.

c. (3 points) If we executed the following line of code which uses our mystery function:

enigma = mystery (\x -> x `div` 5) (\y -> y^2)

what would the fully curried type signature be for enigma? Write it here:

d. (2 points) Referring back to our original mystery function, if you changed Line A to:

h = if (elem x "foobar") then 0 else 1

you will be able to come up with a more specific type signature. Show the new uncurried type
signature for the updated mystery function here:

5. Eggert's Scoping and Typing (12 points)
Professor Eggert has decided to invent a new programming language, called Egged, and has
finalized the syntax and chosen pass-by-object reference for parameter passing like Python.
But… he has yet to decide upon Egged's typing system and scoping rules.

He has chosen four potential options for Egged:

● Static typing (w/type inference) and lexical scoping
● Static typing (w/type inference) and dynamic scoping
● Dynamic typing and lexical scoping
● Dynamic typing and dynamic scoping

Prof. Eggert would like to evaluate the behavior of the following Egged program relative to each
of the above typing/scoping combinations before he formally picks an option:

var x = 42 // Defines a global variable

fn foo(x):

print(x)

x = "egg" // = sets the value of the variable in scope

fn bletch():

print(x) // prints output and then a newline

x = "emacs"

fn bar():

var x = "ocaml" // Defines a local variable

foo(x)

bletch()

print(x)

fn main():

bar()

print(x)

Let's help Professor Eggert figure out what output his program will produce assuming we adopt
each of the following typing/scoping approaches:

a. (3 points) Static typing and lexical scoping: what will the above program's output be, or will
it result in a compile/runtime error? If it results in an error, why?

b. (3 points) Static typing and dynamic scoping: what will the above program's output be, or
will it result in a compile/runtime error? If it results in an error, why?

c. (3 points) Dynamic typing and lexical scoping: what will the above program's output be, or
will it result in a compile/runtime error? If it results in an error, why?

d. (3 points) Dynamic typing and dynamic scoping: what will the above program's output be,
or will it result in a compile/runtime error? If it results in an error, why?

6. This 'n' That (12 points)
a. (3 points) For this problem, you're going to write a list comprehension for use within a Haskell
function named everyOther. The everyOther function takes in an input string and returns a new
string composed of every other character from the original string, starting with the first character.

For example:

everyOther "Hello World!"

returns:

"HloWrd"

Hints: A zip-py solution is the simplest solution. You may find Haskell's even or odd functions
useful.

Write just the Haskell list comprehension that can be used in everyOther in the brackets below:

everyOther s =

[]

b. (2 points) Assuming we execute the Python main() function below:

def bar(m):

return lambda x: m*x

def main():

m = 2

f = bar(m)

m = 5

print("The answer is: ", f(10))

What will this program print?

c. (5 points) For this problem, we will list a series of operations. Your job is to determine whether
each operation could reasonably be used in a language that is (a) statically typed, (b)
dynamically typed, (c) gradually typed, or some combination of a, b, and c. For each operation,
circle all language typing systems that are compatible with the operation:

i. Typecasting a Person object to a Dog

Static Typing Dynamic Typing Gradual Typing

ii. Coercing a value like 5 during assignment, as in a = 5

Static Typing Dynamic Typing Gradual Typing

iii. Coercing a variable x in an expression as in x * 5.0

Static Typing Dynamic Typing Gradual Typing

iv. Checking an operation for type-safety at runtime (e.g., x.quack())

Static Typing Dynamic Typing Gradual Typing

v. Performing duck typing

Static Typing Dynamic Typing Gradual Typing

d. (2 points) Consider the following C++ program:

int main() {

int *arr = new int[100];

delete [] arr;

}

Describe in one sentence how the arr variable's lifetime and scope are affected by the delete
command:

