CS131 Fall 22 - Midterm #1
Nov 2" 2022

Full Name (LAST, FIRST):

Student ID:
Problem #1 /13
Problem #2 /10
Problem #3 /4
Problem #4 /7
Problem #5 /5
Problem #6 /16
Problem #7 /10
Problem #8 /15
Problem #9 /10
Total /90

Please practice academic integrity - don’t cheat!

1.

(13 points total)

Consider the following algebraic data type which defines the variants required for a
linked list of integers in Haskell:

data List = Node Int List | Nil deriving Show

For this problem, you will define a function called “delete” that accepts two
parameters: a linked list and an integer value to delete. The function deletes all of
the nodes from the linked list that contain the passed-in value.

Here’s how it would be used:
some_list = Node 5 (Node 10 (Node 40 (Node 10 Nil)))

deletes all nodes with a value of 10 from the list
returns: Node 5 (Node 40 Nil)
delete some_list 10

deletes all nodes with a value of 42 from the list
returns: Node 5 (Node 10 (Node 40 (Node 10 Nil)))
delete some_list 42

a) (2 points) Provide a valid Haskell type definition for the delete function.

b) (9 points) Write the body of the delete function in Haskell - you may use any of the

c)

syntax/techniques we discussed during class. You may NOT use any helper
functions.

(2 points) Given the following linked list:

some_list = Node 17 (Node 5 (Node 10 (Node 40 (Node 12 Nil))))
when we call:

delete some_list 40

How many new nodes, if any, will be generated by your delete function?

2. (10 points total)

Consider the following Python program (with included line numbers for clarity)
which performs some operations on lists:

@1 11 = [55]
02 12 = [3, 11, 10]
@3 13 = [3, 11, 10]

04 12.append(100)
05 12[1].remove(55)
06 print(12)

07 print(13)

08 13[1].append(33)
09 13[2] += 11

10 print(12)

11 print(13)

a) (5 points) What is the output of the above program?

b) (5 points) Suppose we changed line #3 above (bolded for clarity) to the following:
13 = 12

What would the output be now?

3. (4 points total)

Consider the following C++ program:

printStuff(void* buff) {
char* buf = buff;
cout << buf;

}

double* generateRandomDouble() { /* Generates a random double */ }

int main() {
printStuff(generateRandomDouble());

}

If you weren't aware, a void* pointer can be reinterpreted to a pointer of any type.
In C++, this code compiles with no errors.

If you run this program repeatedly, however, you will find that sometimes it works,
sometimes it crashes, and sometimes it keeps on printing nonsense and segfaults!

a) (3 points) Explain, with explicit reference to one of the type systems we learned in
class, why this occurs (even though the program compiles).

b) (1 point) Does printStuff’s implementation use a cast, a conversion, or neither?

4,

a)

b)

Q)

d)

(7 points total)

Classify that language got such high ratings that we're even bringing it to your
midterm!

Take a look at code from this mystery language. Assume that it has different types
for integers (42) and floats (42.1).

v 1= 42.1 // := 1s a variable declaration
v = 42
fmt.Println(v) // prints v’s value

fmt.Printf("v's type: %T", v) // prints v’s type at this moment
This code works with no errors.

(2 points) Assume that the language is statically typed. What do you think would be
printed, and why?

(2 points) Assume that the language is dynamically typed. What do you think would
be printed, and why?

(2 points) In which type system - static, dynamic, neither, or both - would you
expect that a type coercion is occurring and why?

(1 point) Assuming the language above is statically typed, what mechanism is it
using to determine the type of variable v when it is defined?

5.

(5 points)

William is a student in CS 131, and feels like he has a pretty good understanding of
why an int and float are not subtypes of each other.

William is learning the Julia programming language, which supports
arbitrary-precision arithmetic. In other words, it has a data type that can represent
any decimal number—no matter how large, or how many digits are after the
decimal.

Let’s call this data type JuliaNumber. Additionally, assume that Julia has some way
to (implicitly) convert between JuliaNumber and int, float.

William's question is this: is either int or float a subtype of JuliaNumber (or
both/neither)? Why or why not? Please explicitly reference the definition of

subtype we have discussed in class.

For this problem, assume int and float are fixed-bit representations, like in C++.

6

(16 points total)

You have been given the following program in a language you're not familiar with:

fn create_list(n):
{ } creates a new object has no fields/properties or methods
head = cur = { }
for i in range(n): # goes from [6,n)
obj[“field”] = val is the equivalent of obj.field = val
cur[“value”] = 1
next = { }
cur[“next”] = next
cur = next
cur[“value”] = n
cur[“next”] = head[“next”]
return head

fn main():
head = create 1list(5)
head = nil

For the following questions, if you need to reference a specific node you may
identify it based on the number stored within it (e.g., “node 3").

a)

(4 points) Assuming this language is using Mark and Compact garbage collection,
which nodes would you expect to be garbage collected sometime after we reach the
line “head = nil” in main()? Why?

(4 points) At what point would the nodes you listed in part a) be garbage collected
(using Mark and Compact)? Immediately? At some point in the future? What would
determine when this happens?

(4 points) Assuming this language is using Reference Counting garbage collection,
which nodes would you expect to be garbage collected sometime after we reach the
line “head = nil”in main()? Why?

(4 points) At what point would the nodes you listed in part c) be garbage collected
(using Reference Counting)? Immediately? At some point in the future? What would
determine when this happens?

7. (10 points total)

Consider the following Python code (with provided line numbers for clarity):

01 def f(x):

02 a =X

03 def g(x):

04 print(x + a)
05 return g

06

07 def h(x):

88 d = f(3)
09 for i in range(5):
10 d(i)

a) (3 points) Among the following variables and functions:

Variables: x (as in f(x) online 1), a, x (asin g(x) online 3), d, i
Functions: f, print

Which are in scope on line 4: (print(x + a))?

b) (4 points) Classify the in-scope functions and variables you listed in part a) according
to the LEGB (Local, Enclosing, Global, Built-in) rule in Python (e.g. “x is a global
variable”).

c) (2 points) During the execution of function h (including calls to other functions), find
and describe an instance where a variable is out of scope but is still alive.

d) (1 point) Is there any shadowing taking place in this code? If so, on what line(s) is
shadowing taking place?

8. (15 points total)

Write a Haskell function named substr that determines whether a first string is a
substring of a second string. It might be called as follows:

substr "ce" "i like ice cream" should return True
substr "lice" "i like ice cream" should return False

You must include a proper Haskell type signature for full credit. You may use helper
function(s).

Hint: Recall that in Haskell, strings are just lists of characters.

9. (10 points total)

a) (5 points) Which of the Haskell function signature types below are equivalent with
each other? So, for example, your answer should look like “i and viii are equivalent”
and “ii, vi, and vii are equivalent.” Group the similar types together.

i.a->b ->c->d
i.(a ->b) ->c ->d
iii,a -> (b -> c) ->d
iv.a -> b -> (c -> d)
v.(a -> b) -> (c -> d)
vi.((a -> b) ->c) ->d
viba -> (b -> (c -> d))
vii,a -> ((b -> c) -> d)

b) (2 points) You are given the following function with the type signature:
function :: a -> ((b ->c¢c) ->d) ->e -> f

What is the type signature of the resulting function after 1 partial application? What
about after 2 partial applications?

Q)

d)

(1 point) Suppose we have a Python function named curry_2 that takes in any
Python function expecting exactly 2 arguments and converts it into its equivalent
curried form.

Letg = curry_2(f). Given two variables x and y, show how you would call g on
x and y using valid Python syntax to yield the same value returned by f(x, y).

(2 points) Given the Python function:

def f(x,y,z):
return x * y + z

Write a function with the signature curried_f() in Python that returns a curried
version of the function £ shown above.

