Practice Problems for the Final

Questions

1. Consider a petting zoo class which is implemented with parametric polymorphism in some
unknown language:

I petting_zoo0.src
class PettingZoo<T> {
public:
void add(T animal);
void pet_all animals() {
for animal in animals:
animal.pet();

private:
Array<T> animals = new Array<T>; // allocate array for animals

}s
Here’s how it'd be used:

// main.src

PettingZoo<Dog> dog_petting zoo = new PettingZoo<Dog>;
Dog shep = new Dog();

dog_petting zoo.add(shep);

dog_petting zoo.pet_all animals();

a. Let’s assume this class is ONLY used with Dogs. Is the above code using generics or
templates? How can you tell?

b. Let's assume that the code is using the alternate scheme than the one you identified in part a
(e.g., if you guessed Generic in part a, then the alternate scheme would be Templating, and
visa-versa). What would you have to change about the PettingZoo class to allow it to properly
let you pet animals in the petting zoo? Why would you have to do this?

c. Assume you created petting zoos for dogs, giraffes and monkeys in a single program, and
compiled the program to an executable file. Would the executable file be smaller, the same
size, or larger if the language were using Generics rather than Templates? Why?



2. Consider the following program in an unknown language:

def foo(x: int):
x = 3.5 // Line A
print(x)

def main():
foo(10)

a. Assuming this language is dynamically typed, what would be the type of the value
pointed to by x after line A?

b. Assuming the language is dynamically typed, what is the type of variable x after line A?

c. Assuming the language is statically typed, what would be the type of the value pointed to
by x after line A?

d. Assuming the language is statically typed, what is the type of variable x after line A?

e. Assuming the language is statically typed, what must be happening on line A to perform
the assignment.

3. We have a Washable interface and a Driveable interface, and define a Car class which
implements both interfaces - it can be washed and driven. Which of the following are true:

Car is a supertype of Washable and Driveable

Car is a subtype of Washable, and a subtype of Driveable

Washable and Driveable are supertypes of a Car

Washable is a reference type

Car is a reference type

If a Car indicates that it supports both Washable and Driveable interfaces, but ONLY
implements the Washable methods, but not the Driveable methods, Car would be a
concrete type that could be used to define objects

-0 Q00T D

Solutions

a. Is the above code using generics or templates? How can you tell?

The code must be using templates, because generics do not allow specific member functions
like pet() to be called within the generic. A generic must only rely upon the lowest-common
denominator functionality across all objects. So with a generic, the pet() method call would be
prohibited. A template-based generic would allow this, however.



b. Let's assume that the code is using the alternate scheme than the one you identified in part a
(e.g., if you guessed Generic in part a, then the alternate scheme would be Templating, and
visa-versa). What would you have to change about the PettingZoo class to allow it to properly
work? Why would you have to do this?

You’d have to define a Pettable interface which contains at least a pet() function, and use that to
bound your generic, e.g.:

interface Pettable {
void pet();
}

class PettingZoo<T: Pettable> {
public:
void add(T animal);
void pet_all animals() {
for animal in animals:
animal.pet();

}

private:
Array<T> animals = new Array<T>; // allocate array for animals

}s

The specific syntax doesn’t matter, since we didn’t tell you the syntax of the language. But you
need to know that you'd have to bound the generic with a pettable interface.

c. Assuming you created petting zoos for dogs, giraffes and monkeys in a single program, and
compiled the program to an executable file. Would the executable file be smaller, the same
size, or larger if the language were using Generics rather than Templates? Why?

If the language used generics, the program would be smaller. When using templates, the
compiler generates a separate copy of the class for EVERY single type its used with, meaning
that it would generate and compile code for PettingZoo<Dog>, PettingZoo<Giraffe>, and
PettingZoo<Monkey>, making the code much larger.

a. Assuming this language is dynamically typed, what would be the type of the value
pointed to by x after line A?



-0 Q00T D

The type of the value would be float or double, since the variable x refers to a floating
point number after the assignment.

Assuming the language is dynamically typed, what is the type of variable x after line A?

Variables do not have type in dynamically typed languages. The variable is just a name
that is bound to a value, and the value has a type.

Assuming the language is statically typed, what would be the type of the value pointed to
by x after line A?

The type of the value would be int, since the variable x was defined as an integer in the
formal parameter list, and assigning it to a float wouldn’t change the original type.

Assuming the language is statically typed, what is the type of variable x after line A?

The type of the variable would be int, since the variable x was defined as an integer in
the formal parameter list.

Assuming the language is statically typed, what must be happening on line A to perform
the assignment.

There must be a coercion (an implicit conversion) between float to int during the
assignment.

Car is a supertype of Washable and Driveable: False

Car is a subtype of Washable, and a subtype of Driveable: True

Washable and Driveable are supertypes of a Car: True

Washable is a reference type: True

Car is a reference type: False

If a Car indicates that it supports both Washable and Driveable interfaces, but ONLY
implements the Washable methods, but not the Driveable methods, Car would be a
concrete type that could be used to define objects: False - Car would be an abstract
class, requiring subclassing and implementation if the unimplemented methods to create
a concrete class that can be used to instantiate objects.



